Karaburan
Project Karaburan | |
---|---|
Monitoring water quality | |
Status | Initializing |
Contact | bertrik |
Last Update | 2024-07-07 |
Next steps
- write python scripts
- arduino turbidity
- turbidity-to-mqtt
- hook things into systemd / udev
- e.g. insert GPS -> create symlink with udev -> trigger (re)start of gpsd
- analoog in op de pi:
- UPS voor pi: https://elektronicavoorjou.nl/product/raspberry-pi-ups-hat/
- 1-wire stuff:
- 1-wire adapter emulation on an stm32: https://github.com/alitekin2fx/stm32_ds2480_emu
- owfs.org for easy interfacing with multiple 1-wire devices in a hierarchical way on linux
USB HID as analog input
An stm32 based bluepill board can be flash with firmware to allow analog input to be exposed as USB HID.
How to flash the stm32:
- connect an stm32 bluepill to an stlinkv2
- install openocd
- flash the freejoy firmware the following
- download the firmware from XXX
- create a symlink to the hex file called firmware.hex
- flash the initial firmware using
openocd -s /usr/share/openocd/scripts -f interface/stlink.cfg -f target/stm32f1x.cfg -c init -c "program firmware.hex verify reset exit"
- connect the stm32 using a USB cable
- download the freejoy configurator from https://github.com/FreeJoy-Team/FreeJoyConfiguratorQt
- start and load the karaburan.cfg setting
See also https://github.com/vostrenkov/EazyJoy
influxdb
See https://hub.docker.com/_/influxdb
See https://github.com/bertrik/karaburan/tree/master/influxdb
investigate RTK GPS
Goal: figure out if it is practically possible to achieve cm resolution with a 200-euro GPS and a free correction service: YES
- https://www.nsgi.nl/referentiepunten-en-gnss-data/gnss-data/real-time-streams public correction data service
- https://www.ardusimple.nl/rtk-in-5-minutes/
- RTK in action https://www.youtube.com/watch?v=Oc1LBFDj2MA
- Use with Linux / gpsd: https://stackoverflow.com/questions/77314115/drotek-gpsd-and-ntrip-correction-data-for-precise-positioning ?
- Chipsets
- Quectel LC29H, see https://rtklibexplorer.wordpress.com/2024/04/28/dual-frequency-rtk-for-less-than-60-with-the-quectel-lc29hea/
- uBLOX ZED-F9P
- Boards
- UM980 / UM982
Edit /etc/default/gpsd, set GPSD_OPTIONS:
GPSD_OPTIONS="-Gn ntrip://user:pass@ntrip.kadaster.nl:2101/CBW100NLD0"
Option -G exposes the control socket on all network interfaces, option -n keeps the GPS active if there is no one currently connected.
Plotting live location on a map:
- Configure gpsd to expose its socket to the outside world: last section of https://gpsd.gitlab.io/gpsd/troubleshooting.html
- In QGIS, press ctrl+0 to show the GPS information tab, enter the name of the remote gpsd (port 2947)
Station at Stolwijk (close to Gouda): https://gnss1.tudelft.nl/dpga/station/Stolwijk.html#STWK ?
Introduction
Topics:
- air quality sensors
- ammonia
- NOx
- water chemical analysis
- nitrates
- ammonia
- dissolved oxygen
- sulfide/sulfate
- phosphates?
- salinity (chlorides?)
- water physical analysis
- temperature
- clarity/turbidity -> investigate standard ways of measuring/expressing this
- conductivity/total dissolved solids
- water properties by light reflection, hyperspectral/polarity
- depth?
- boat control
- trajectory -> steering
- idea: interface with the remote control, not with the boat
- idea: find a boat with easily hackable remote control protocol
- idea: can we get sensor data over this link too, e.g. GPS?
- camera control
- post-processing
- data presentation
- video/photo stitching
- time lapse view
- map view of properties
- data presentation
- use cases
- verify with domain experts, how to engage?
- slootview, under/above water
- minimum viable prototype
- high-res measurement by location, by time
- materials
- boat selection
- processing platform selection
- communication platform selection
Air quality sensors
Nitrogen compounds in air
According to https://www.rivm.nl/stikstof/monitoren-advies-onderzoek/overzicht-stikstofmetingen/metingen-stikstof-in-de-lucht average (typical?) values of
- Ammonia (NH3): 6.7 ug/m3 (9.6 ppb)
- NOx: 27.3 ug/m3
- NO2: 18.6 ug/m3 (9.9 ppb)
(ppb-conversion using https://www.breeze-technologies.de/blog/air-pollution-how-to-convert-between-mgm3-%C2%B5gm3-ppm-ppb/ )
RIVM report on inexpensive nitrogen-in-air sensors: https://www.samenmeten.nl/sensoren-voor-no2 Conclusion: most sensors are not sensitive enough to be used in typical outdoor conditions, with perhaps one exception: alphasense NO2-B43F
Water physical analysis
Turbidity / clarity
See https://en.wikipedia.org/wiki/Turbidity
Aliexpress sensor TS-300B: https://nl.aliexpress.com/item/1005006732956937.html Has a range 0 ~ 1000 ± 30 NTU
Order of magnitude for turbidity:
- Drinking water upper limit: 4 NTU (European turbidity standard for drinking water)
- Ambient water: 10-150 NTU. The US state of Washington use a "background" value of 50 NTU as reference.
(see https://en.wikipedia.org/wiki/Turbidity#Standards_and_test_methods )
So the Aliexpress sensor is suited only for "dirty" water.
Boat control
Typically the wireless link looks like this:
- 2.4 GHz working frequency
- 500m range
Interesting links:
- Flytec-2011 remote control https://nl.aliexpress.com/item/1005002984723718.html
- Replacement board for various boats with "18" in their type number: https://nl.aliexpress.com/item/1005006115484716.html
- DIY Multi-protocol module: https://github.com/pascallanger/DIY-Multiprotocol-TX-Module
remote control
Image of remote control RF chip: [...]
Parts:
- 12.000 MHz crystal/oscillator
- 16-pin control chip: 20_CL6L071
- 6-pin RF chip: 1110 / VKA3, could be an rx/tx switch, amplifier or filter circuit
See also: https://www.open-tx.org/
Next steps:
- map out the connections between the mainboard and the rf board, expected: VCC, GND, spi ?
Use cases
material:
- https://www.youtube.com/watch?v=cMk0bGvIU1E
- https://iplo.nl/thema/water/oppervlaktewater/kaderrichtlijn-water
- kaartje: https://krw-nutrend.netlify.app/ -> 2 meetpunten op de reeuwijkse plassen, tijdresolutie is 1 jaar?
Useful distinction, typically used in documents/guidelines:
- chemical quality, what substances are present in the water?
- biological / ecology quality, what kind of living organisms live in the water?
Reeuwijkse plassen
See
- https://www.rijnland.net/wat-doet-rijnland/in-uw-buurt/reeuwijkse-plassen/ their stated goal: CLEAR WATER
- https://www.rijnland.net/regels-op-een-rij/subsidies-en-andere-financi%C3%ABle-bijdragen/
potential applications:
- inspect water sides (oever) over time
- underwater camera: detect invasive cray fish
- sample water properties at high spatial resolution, high time resolution
- early detection of indicators for cyanobacteria: temperature and nutrients
Detect/find pollution source
- ...
Implementation
reading temperature sensor
The idea is to to use a DB18B20 temperature sensor, read it using an arduino nano board acting as a 1-wire adapter. Use openwire-fs as user-side openwire software http://owfs.org
Preparation:
- Add the regular user to the 'dialout' group, so it can access serial ports
sudo adduser <name> dialout
Setting up the hardware:
- connect the DS18B20 to the connector board with the pull-ups
- wire the connector board to the arduino nano, see ...
- plug the arduino nano in the pi
Setting up the software:
- Install openwire fs
sudo apt install owfs
- Create the openwire fs mountpoint
sudo mkdir /mnt/1wire
- Configure owfs, edit /etc/owfs.conf
server: device = /dev/ttyUSB0 mountpoint = /mnt/1wire allow_other (comment out the line with the FAKE devices)
- Configure systemd services
sudo systemctl enable owserver owhttpd sudo systemctl disable owftpd
- Start the systemd service
sudo systemctl start owserver owhttpd
- Check the logs
sudo journalctl -xeu owserver -f
- Open a browser to view the web interface
http://localhost:2121 or http://raspberrypi.local:2121