UltrasonicPlayer: Difference between revisions

From RevSpace
Jump to navigation Jump to search
m (geen plaatje toegevoegd)
mNo edit summary
Line 21: Line 21:
Next steps:
Next steps:
* measure the frequency range of the USB audio card, using artificial waveform(s), like sweeps and fixed-frequency tones. I can create these waveform in Audacity (which supports the 384 kHz sample rate).
* measure the frequency range of the USB audio card, using artificial waveform(s), like sweeps and fixed-frequency tones. I can create these waveform in Audacity (which supports the 384 kHz sample rate).
* measure the frequency range of the amplifier circuit.
* measure the frequency range of the amplifier circuit
* check whether devices can actually play ultrasonic audio over this sound card: my laptop, perhaps some cheapish android tablets (using an OTG cable).


== Hardware ==
== Hardware ==

Revision as of 18:02, 5 October 2016

Project UltrasonicPlayer
Nog geen plaatje.png
An inexpensive DIY ultrasonic audio player
Status Initializing
Contact bertrik
Last Update 2016-10-05

Introduction

This project is about a do-it-yourself portable ultrasonic audio player, built out of inexpensive modules available on sites like AliExpress.

A typical use case for this is a kind of "lure" for biology researchers to improve the results of trying to catch bats in a net. The player emulates (social) bat calls which attracts the bats to the net, increasing the chance for them to be caught.

The ultrasonic player acts as a USB sound card with high sampling rate plus a speaker to turn it into actual ultrasonic audio. You have to provide a device with a media player yourself, like a tablet or a laptop.

Status

2016-10-02: ordered the parts (USB audio, amplifier, a few step-up circuits).

Next steps:

  • measure the frequency range of the USB audio card, using artificial waveform(s), like sweeps and fixed-frequency tones. I can create these waveform in Audacity (which supports the 384 kHz sample rate).
  • measure the frequency range of the amplifier circuit
  • check whether devices can actually play ultrasonic audio over this sound card: my laptop, perhaps some cheapish android tablets (using an OTG cable).

Hardware

The hardware consists of the following parts:

  1. Some kind of media player which takes care of the storage and playback of the ultrasonic files, this can be a tablet or laptop
  2. A USB audio card to create the analog ultrasonic signal
  3. An amplifier to amplify the ultrasonic signal
  4. A speaker to turn the signal into actual ultrasonic audio

USB sound card

I'm considering this one: USB sound card based on a SA9227+PCM5102 chip.

It allows a maximum sample rate of up to 384 kHz, or equivalently audio op to about 170 kHz. Price: about E30,-

Amplifier

I'm considering this one: amplifier board based on a TDA2030 chip.

The TDA2030 chip has a claimed audio bandwidth of up to 140 kHz. Price: about E1,-

Speaker

I'm considering this one: Vifa/Tymphany XT25SC90-04.

This speaker is also used in other products that produce ultrasonic audio.

Price: about E22,-

Power

For the power source, there are two options:

  1. draw power from the USB port from the tablet/laptop
  2. use our own power from a separate battery

In the first case, I'll have to consider the maximum current that an average USB port can supply, which is 500 mA typically. In the second case, I'm thinking of just using a 5V USB battery. There are plenty of models to choose from, in varying capacity ranges and prices.

If we're powering everything from 5V, we may need some kind of step-up converter to supply the amplifier with 12V. I'm considering this one: 5V-to-12V step-up cable or possibly this USB 5V to 12V converter. An important consideration for the step-up converter is that the switching frequency is considerably higher than any ultrasonics frequencies we are interested in.