ChaoticCircuits

From RevSpace
Revision as of 18:47, 12 February 2012 by Gori (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Project Chaotic circuits
Status Completed
Contact User:Gori
Last Update 2012-02-12

see also IgorsProjectIdeas


Build a simple electronic chaos demo for my course. Chaos can be observed using an oscilloscope. A portable one can be built with an arduino

Background reading


Version 2.0

Create the circuit that works at a lower frequency. Smith also describes a circuit that operates at 75 KHz instead of 2 MHz. Main bottle neck is the required large inductance

Goal is to :

  • Be able to hear the chaos
  • Have the whole thing portable, without the need for an external oscilloscope and signal generator
  • Have it nice and presentable so it can be used as a demo

Todo:

  • Calculate the inductance and capacitance required to achieve a resonant frequency in the audible range, preferably around 440 Hz. Conservative human hearing range is from 20 Hz to 15 kHz.
  • Identify the operational limits of the [httphttp://code.google.com/p/arduinoscope/ arduinoscope] - max seems to be around 200 kHz, well above audible range
  • Make sure that an arduino based scope can observe the signal.
  • salvage/build/buy an appropriate spool
  • create a suitable analogue signal generator that can drive the whole thing. Arduino can no do this, as it has no analogue circuitry for the job. PWM will (propbably) not do.
  • Add speakers in order to hear the chaotic harmonics under/overtones
  • package it is something transparent so that it makes a nice demo


Version 1.0

  • Following : http://www-physics.ucsd.edu/~des/DSmithChaosExperiment.pdf
  • Working oscilloscope and signal generator present, capable of 2Mhz
  • Components according to the manual :
    • 200 ohm resistor
    • inductor, 100 microHenry needed, available a PE-53653 , with 16.1�H
    • diode - either works: 1N4001, 1N4004, 1N4005, 1N4007
  • As built, the circuit does not display any chaotic behavior as we change the amplitude, The inductor is almost 5 times to weak.
  • I have several spools, adding an extra spool in series, bringing the inductance up to 32 �H does not help.
  • When adding random spools, it is good to measure its inductance. Here is a way to do it : http://www.daycounter.com/Articles/How-To-Measure-Inductance.phtml

BOM

  • 1N4007 diode
  • 220 ohm resistor
  • (2 x 16) 32 �H + a random spool (code 471K 98139)
  • Signal:
    • 1.5 MHz
    • Amplitude op 0 dB
    • sinus signaal
  • Improvements needed :
    • Calculate / measure the currently installed inductance, and bring it up to spec, so that we get a nicer signal split than now
  • With smedings help, we determined that the inductance of the three coils is 1351 uH or approx 1.4 mH

Results